1(c). Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a third vector to form a triple product.
(i) Scalar triple product: $\vec{A} \cdot(\vec{B} \times \vec{C})$

Geometrically $|\vec{A} \cdot(\vec{B} \times \vec{C})|$ is the volume of the parallelepiped generated by \vec{A}, \vec{B} and \vec{C}, since $|\vec{B} \times \vec{C}|$ is the area of the base, and $|\vec{A} \cos \theta|$ is the altitude. Evidently,

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})
$$

In component form $\vec{A} .(\vec{B} \times \vec{C})=\left|\begin{array}{ccc}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|$
Note that the dot and cross can be interchanged: $\vec{A} \cdot(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B}) \cdot \vec{C}$
(ii) Vector triple product: $\vec{A} \times(\vec{B} \times \vec{C})$

The vector triple product can be simplified by the so-called BAC-CAB rule:

$$
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
$$

